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Determination of single fibre strength 
distribution from fibre bundle testings 

Z H I F A N  CHI* ,TSU-WEI  CHOU, GUOYI  SHEN 1:~ 
Mechanical and Aerospace Engineering Department, and t Civil Engineering Department, 
University of Delaware, Newark, Delaware 19711, USA 

The strength of fibres used as reinforcement materials for advanced composites is often 
assumed to follow the two-parameter Weibull distribution function. However, the 
experimental process widely used for obtaining the two parameters is tedious and prone 
to error. In this paper, two simple methods for determining the parameters of the Weibull 
distribution function are developed based upon the analysis of the tensile curves of fibre 
bundles. The first method focuses on the relation between the shape of a fibre bundle 
tensile curve and the survivability of fibres; the second method makes use of the relation 
between the maximum load point of a fibre bundle tensile curve and the shape parameter 
of the Weibull distribution of fibre strength. These two methods, in particular the second 
one, have greatly simplified the fibre testing process. Experimental results on Thornel-300 
carbon fibres further demonstrate the validity of these techniques. 

1. Introduction 
Fibres used as reinforcement materials for 
advanced composites, such as carbon and glass, 
exhibit high tensile strength. On the other hand, 
the presence of defects, especially on fibre surfaces, 
is responsible for the variations in fibre strength. 
Thus, it is pertinent in the analysis and prediction 
of composite strength to take into account not 
only fibre average strength but also fibre strength 
distributions. The large amount of test data 
accumulated on fibre strength measurements indi- 
cates that it is feasible to represent fibre strength 
distributions by a two-parameter Weibull distribu- 
tion function [1 -3]. 

A procedure often adopted by researchers in 
determining fibre strength distribution is through 
the measurement of the average strength of a 
group of fibres of the same length. The Weibull 
shape parameter is then determined from the 
relationship between fibre average strength and 
gauge length [4]. There are shortcomings in such 
measurements. First, it is rather tedious to extract 
individual fibres from a bundle and to perform 
numerous tests on fibres with very small diameter. 
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Second, the extraction of fibres from a bundle 
inevitably has "selected" the stronger ones, since 
the weaker fibres are prone to damage and fracture 
in the process. Third, it is almost impossible to 
determine the exact cross-sectional area of a single 
fibre. Experiments based upon laser diffraction 
fringes have shown that the measured fibre 
diameters vary along the fibre length due to fibre 
twist and the non-circular fibre cross-section [5]. 

Manders and Chou [5] discussed some of the 
problems experienced in their measurements of 
fibre strength. They examined single fibre strength 
by measuring fibre bundle strength. The work was 
restricted to the determination of Weibull shape 
parameters only. 

In this paper, the strength of single fibres is 
assumed to follow the two-parameter Weibull 
distribution. A theoretical expression of the load-  
strain (P-e)  relationship for a bundle of fibres 
under tension has been derived first. Then, two 
methods for determining the two parameters of 
Weibull distribution for single fibre strength have 
been developed. This is done by analysing the 
characteristics of the P - e  expression. The validity 
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of  these methods are verified by experimental 
measurements of  carbon fibre strength. 

2. Analysis 
2.1. Assump t i ons  
The following assumptions are basic to the 
analytical work: (1) the distribution of  single fibre 
strength under tension follows the two-parameter 
Weibull distribution, 

F(a)  = 1 -- exp [--L(o/ao) m] (1) 

where F(a)  is the failure probability of  single 
fibres of  length L under an applied stress no 
greater than a, ao and m denote the scale 
parameter and shape parameter of  the Weibull 
distribution, respectively; (2) the relationship 
between applied stress, a, and strain, e, for a single 
fibre follows Hooke's Law up to fracture, 

a = E~e (2) 

where g f  is the fibre elastic modulus; (3) the 
applied load is distributed uniformly among the 
surviving fibres at any instant during a bundle ten- 
sile test. 

2.2. F ibre bund le  tensi le  l o a d - s t r a i n  (P-e) 
re la t ionsh ip  

From Equations 1 and 2, we obtain 

F(e) = 1 -- exp [--L(e/eo) m] (3) 

where F(e)  is the failure probability of a single 
fibre under strain no greater than e, e0 is the scale 
parameter of  Weibull distribution for strain, and 

eo = ao/Er (4) 

At an applied strain, e, the number of  surviving 
fibres in a bundle, which consists of  No fibres, is 

N = N o [ 1 - - F ( e ) ]  = Noexp[ - -L (e / eo )  m] 

(s) 

N can be related to the applied tensile load,P, on 
the bundle by 

P = oAN = AEfeNoexp[ - -L (e / eo )  m] (6) 

Equation 6 is the relationship of  P - e  for a bundle 
of  fibres under tension, where A is the cross- 
sectional area of a single fibre. If  the A, No, L, 
E~, eo and m are known, the P - e  curve for a 
bundle of fibres could be drawn according to 
Equation 6. Fig. 1 shows such an example. 
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Figure l Theoretical P-e curve for carbon fibre, Ef = 
225 GPa, df = 7 t~m,N o = 1000, m = 4.5 and e o = 0.026. 

2.3. Character is t ics  o f  the theore t ica l  P-e 
curve 

2.3. 1. The shape o f  the P-e  curve 
For brittle solids, the P - e  curve usually terminates 
at the point ofPma x. However, it can be seen from 
Equations 6 and 7 in the following and Fig. 1 that 
in the case of  a brittle bundle the P - e  curve is con- 
tinuous and smooth everywhere. After reaching 
the point Pm~,,, the load decreases gradually to 
zero. 

2 3.2. The slope o f  the P-e curve at e = 0 
From Equation 6, 

dP 
- AErNo[1 -- Lm (e/eo) m ] exp [--L (e/e0) m] 

de 
(7) 

and the slope at e = 0 is 

dP = AE~No (8) 
So = ~ e=O 

Thus the equation for the tangent line of  the P - e  
curve at e = 0 is 

P* = AE~Noe (9) 

2.3.3. The relationship between a P-e  
curve and the survivability o f  single 
fibres 

It is observed from Equations 6 and 9 that 

P 
p~ = 1 - - F ( e )  (10) 

3320 



o r  
P 

- 1 --F(e) (11) 
S0e 

The survivability of fibres at a given level of e on 
the P-e curve can be determined by Equation 11. 
Thus, Equation 11 forms the base of the first 
method presented in the next section for deter- 
mining the parameters of fibre strength 
distribution. 

2.3.4. Maximum load on the P-e curve 
The strain corresponding to the maximum load on 
the P-e curve is obtained from Equation 7 at 
dP/de = 0 as 

( 1 l ' /m 
e = . x  = eo (12 )  

Thus, the maximum load is 

/ 1 W" 
P m a x  = ANoefeo[i-~me~ (13) 

where e = 2.71828 . . . .  
From Equations 8, 12 and 13, the slope of the 
straight line connecting the origin and the point of 
Pm~ is given by 

SA -- / 'max _ S o  ( 1 4 )  
e m  

o r  

m = 1/ln (P--~aax)emS~ (15) 

Equation 15 is the base of the second method 
presented in the next section for determining the 
parameters of fibre strength distribution 

3. Single fibre strength distributions 
Two methods for determining the distribution of 
single-fibre strength are presented in this section. 

3.1. The first method 
The procedure, as based upon Equation 11, is out- 
lined below. 

1. Determine the values of P and e of a P-e 
curve obtained from the tensile test of a loose 
bundle. 

2. Calculate the slope So by Equation 8 with 
the data E~,A and No of the fibre bundle. 

3. Determine from Equation 11 the fibre surviv- 
ability, 1 - -F (e ) ,  corresponding to each strain of 
the experimental P-e curve for the fibre bundle. 

4. The experimental data points of 1 - - F ( e )  
are plotted against e on a Weibull probability 
paper. If all the data points are situated close to a 

straight line, the strength of fibres can be assumed 
to follow the Weibull distribution, and the shape 
parameter, m, for the fibre strength distribution i s  

i 
obtained from the slope, of the straight line. 

5. The scale parameter, %, is determined f r o m  
Equation 12. 

3.2. The second method 
Based on Equation 15, the following procedure is 
followed: 

1. obtain the Pmax and em from the experi- 
mental P-e curve for fibre bundles; 

2. calculate initial slope, So, of the curve from 
Equation 8; 

3. obtain the shape parameter, m, from Equa- 
tion 15; and 

4. the scale parameter, %, is determined from 
Equation 12. 

It is interesting to note that a theoretical P-e 
curve can be constructed according to the values 
of A, E~, No, L, m and eo obtained by this method 
(see Equation 6). By comparing the theoretical 
and experimental P-e curves, the reliability of the 
assumptions involved in the analysis can be 
assessed. 

4. Exper imental  analysis 
In order to examine the reliability of the two 
methods developed in this paper, the strength 
distribution of Thornel-300 carbon fibres is 
measured using two conventional methods as well 
as the two new methods outlined in Section 3. 

First, the strengths of single-fibre specimens 
(600mm gauge length) are measured. The shape 
parameter, m, is determined by measuring the 
slope of the straight line fitting the test data points 
plotted on a Weibull probability paper. The value 
of m = 4.7 is obtained. Then the average strengths, 
O, of a single fibre of gauge lengths 10, 30 and 
60 mm are measured, respectively. The shape par- 
ameter is obtained by measuring the slope 
(-- 1/m) of the straight line fitting the data points 
on a plot of log 0 against logL. The value of m = 
6.6 is obtained in this case. The detail of the 
experiments and the analysis of the data are 
described by Chi and Chou [6]. 

The load-strain (P-e) curves for bundles of 
Thornel-300 carbon fibres (No= 1000, fibre 
diameter = 7/lm, Ef = 225 GPa) with gauge length 
of 60mm are measured. The shape parameter, m, 
and the scale parameter, e0, are obtained by using 
the two new methods of Section 3 for each speci- 
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TABLE I Values of m and e 0 obtained by method 1 

Specimen number m e 0 

1 4.56 0.0277 
2 4.06 0.0301 
3 4.38 0.0257 
4 4.45 0.0249 
5 6.54 0.0166 
6 4.08 0.0227 
7 4.08 0.0324 

Average 4.6 0.026 

men. The data are given in Tables I and II. The 
average shape parameter is 4.6 and 4.5 for the 
methods of  Sections 3.1 and 3.2, respectively. 
These are very close to the value of m of  4.5 
obtained from the experiment for single fibres 
with gauge length of  60 mm. The scale parameter 
is 0.026 for both  new methods.  

The assumption that the fibre strength follows 
the Weibull distribution is further substantiated in 
Figs. 2 and 3. Fig. 2 shows that all the experi- 
mental points of  specimen 3 follow nearly a 
straight line when plot ted on Weibull probabil i ty 
paper. This implies that the strength distribution 
of Thornel-300 carbon fibre obeys the two- 
parameter Weibull distribution function. 

Theoretical P - e  curve with parameters 
obtained from specimen 3 with the method given 
in Section 3.2 is shown in Fig. 3 by the solid 
curve. The experimental  data points are also indi- 
cated. The consistency between the theory and 
experiment is excellent in the range of  bundle 

strain not  much greater than em. 
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Figure 2 Strength distribution of single fibres obtained 
from the tensile curve of a fibre bundle on Weibull prob- 
ability paper. 

fibre in a bundle breaks, the load originally carried 
by this fibre is transferred to the surviving fibres. 
This sudden increase in load will promote more 
fibre breakages in the bundle than in the case 
where the unbroken fibres are under static loading. 
Thus, a certain number of  fibres will break in a 
very short period of  time and so the small 

60 

5. Discussions 
The theoretical P - e  curves for fibre bundles, 
according to Equation 6, should be smooth curves 
as shown in Fig. 1. However, the existence of  the 
step-wise decrease in load (Fig. 4) at a constant 
strain can be explained as follows. When a single 

TABLE II Values of m and e o obtained by method 2 

Specimen number m e o 

1 3.86 0.0332 
2 3.48 0.0362 
3 4.51 0.0249 
4 4.55 0.0244 
5 5.39 0.0195 
6 4.33 0.0214 
7 5.54 0.0236 

Average 4.5 0.026 
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Figure 3 Comparison of  a theoretical P-e curve with 
experimental data. 

3322  



p 

\ 
E 

Figure 4 A typical P-e curve from experiment. 

decreases of load in the P - e  curves appear. If the 
bundle contains more fibres, the decreases in load 
should be less and smaller such as described by 
Manders and Chou [51, where a bundle contains 
1200 fibres. In order to facilitate the analysis, the 
P - e  curve is replaced by its outer envelope. 

The difference between the theoretical and 
experimental P- e  curves increases in the unloading 
part of the P - e  curve (Fig. 3). The strain at a 
given applied load in the experimental P - e  curve is 
smaller than that in the theoretical curve. This 
discrepancy may be partially attributed to the 
dynamic load during fibre breakage. The influence 
of the sudden breakage of a fibre is different when 
it happens in different stages of the P - e  curve. 
The influence is smaller in the initial stage, but the 
influence is larger in the unloading stage since 
there are less surviving fibres to share the dynamic 
load. We do not consider the influence of dynamic 
load when developing the theoretical expression. 

The tensile strain, e, can be determined by 
measuring the relative displacement of two end 
tabs on a specimen with a displacement gauge. 
However, in the present experiments, the 
measured displacement is not the relative displace- 
ment of the two end tabs but an absolute displace- 
ment of the crosshead of the testing machine. The 
major contribution to this relative displacement 
occurs between the end tabs and the grips and it 
must be deducted from the measured absolute dis- 
placement. It has been assumed in the present 
experiments that the relative displacements 
between the end tabs and the grips are linearly 
proportional to the applied load during the loading 

process, and the relative displacements remain con- 
stant after the'lload reaches the Pmax point during 
the unloading process. 

Sufficiently large numbers of bundle tests 
should be performed in order to accurately deter- 
mine the fibre Weibull parameters. For the 
example given in this paper, the results obtained 
from seven fibre bundle tests are fairly close to 
those obtained from single fibre tests, where the 
number of specimens is 56 [6]. 

It could be seen from the example that the 
value of m of 4.5 to 4.6 obtained from the bundle 
is close to the m value of 4.7 obtained from the 
single fibre tensile testing with the same gauge 
length as that of the tested bundle. However, these 
value are different from the m value of 6.6 
obtained from the log O~-logL plot for single fibre 
tested with different gauge length. The same 
phenomenon has been reported by Manders and 
Chou [5], whose m value of 11 obtained from the 
log O~-logL plot is much larger than the m value 
of 4.3 to 5.3 obtained from other methods. 

In Equation 1, the influence of fibre length on 
the fibre strength distribution is expressed by the 
exponent L. The shape parameter, rn, is independ- 
ent of the fibre length, eo is the scale parameter 
corresponding to a fibre of unit length and the 
unit adopted here is a millimetre. The values of 
parameters determined in this paper can be applied 
along with Equation 1 to fibres of different 
lengths. 

6. Conclusions 
1. The theoretical expression of the plot of load 

against tensile strain for a loose bundle of fibres, 
of which the strength follows the Weibull distri- 
bution function, has been established as Equation 
6. The theoretical curve, as shown in Fig. 1, is a 
continuous and smooth curve under both loading 
and unloading conditions. The experimental curves 
exhibit steps, i.e. decreases in tensile load at con- 
stant strain, which are attributed to the dynamic 
load effect. 

2. Two methods for determining the Weibull 
parameters of single-fibre strength distribution 
have been developed based on the analysis of the 
properties of the fibre bundle tensile curve. 

The first method utilizes Equations 11 and 12. 
The fibre survivability, 1 - -F(e) ,  corresponding to 
each value of e is determined by Equation 11 using 
the P and e values of the experimental fibre bundle 
tensile curve. The shape parameter, m, can then be 
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determined from the slope of a straight line, which 
fits the experimental points (1 - F ( e )  against e) 
plotted on a Weibull probability paper. Then the 
scale parameter, eo, can be obtained by Equation 
12. 

The second method is based on Equations 15 
and 12. The shape parameter, m, can be deter- 
mined from Equation 15 with the values of Pmax 
and em obtained from the experimental fibre 
bundle tensile curve. Then the scale parameter, eo, 
can also be determined from Equation 12. 

3. Experimental determinations of the Weibull 
parameters for single-fibre strength have shown 
that the present methods are simpler to perform as 
compared to the direct measurement of single- 
fibre strength. Also, reliable data can be acquired 
with relatively small numbers of tests. 

4. Comparisons of the theoretical P - e  curve 
with experimental data have shown that for a 
given strain in the unloading process the fibre 
bundle loading measured experimentally is much 
smaller than that of the theoretical value. This 
observation implies that the frictional force 

between the broken and unbroken fibres, if it 
exists, is insignificant. 
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